登录    注册    忘记密码    使用帮助

详细信息

Distributional chaos in a sequence and topologically weak mixing for nonautonomous discrete dynamical systems     被引量:2

文献类型:期刊文献

英文题名:Distributional chaos in a sequence and topologically weak mixing for nonautonomous discrete dynamical systems

作者:Zhao, Yu[1];Li, Risong[1];Wang, Hongqing[1];Liang, Haihua[1]

机构:[1]Guangdong Ocean Univ, Sch Math & Comp Sci, Zhanjiang 524025, Peoples R China

年份:2020

卷号:20

期号:1

起止页码:14

外文期刊名:JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS

收录:ESCI(收录号:WOS:000487589500002)、Scopus(收录号:2-s2.0-85073550718)、WOS

基金:This research was supported the Opening Project of Artificial Intelligence Key Laboratory of Sichuan Province (2018RZJ03) and the Opening Project of Bridge Non-destruction Detecting and Engineering Computing Key Laboratory of Sichuan Province (2018QZJ03).

语种:英文

外文关键词:Chaotic in the sense of Devaney; topologically transitive; sensitive; nonautonomous discrete dynamical systems; distributional chaos in a sequence

外文摘要:Assume that (W, g(1,infinity)) is a nonautonomous discrete dynamical system given by sequences (g(m))(m=1)(infinity) of continuous maps on the space (W, d). In this paper, it is proven that if g(1,infinity) is topologically weakly mixing and satisfies that g(1)(n) circle g(1)(m)= g(1)(n+m) for any n, m is an element of {0,1, ...}, then it is distributional chaos in a sequence. This result extends the existing one.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心