登录    注册    忘记密码    使用帮助

详细信息

基于PCA-MCAFA-LSSVM的养殖水质pH值预测模型  ( EI收录)   被引量:32

Forecasting Model for pH Value of Aquaculture Water Quality Based on PCA-MCAFA-LSSVM

文献类型:期刊文献

中文题名:基于PCA-MCAFA-LSSVM的养殖水质pH值预测模型

英文题名:Forecasting Model for pH Value of Aquaculture Water Quality Based on PCA-MCAFA-LSSVM

作者:刘双印[1,2];徐龙琴[1];李振波[2,3];李道亮[3,4]

机构:[1]广东海洋大学信息学院,湛江524025;[2]中国农业大学农业部农业信息获取技术重点实验室,北京100083;[3]中国农业大学北京市农业物联网工程技术研究中心,北京100083;[4]中国农业大学先进农业传感技术北京市工程研究中心,北京100083

年份:2014

卷号:45

期号:5

起止页码:239

中文期刊名:农业机械学报

外文期刊名:Transactions of the Chinese Society for Agricultural Machinery

收录:CSTPCD、、北大核心2011、EI(收录号:20142217764267)、Scopus(收录号:2-s2.0-84901194812)、北大核心、CSCD、CSCD2013_2014

基金:'十二五'国家科技支撑计划资助项目(2011BAD21B01);广东省科技计划资助项目(2012A020200008;2011B040200034;2012B091100431);广东省自然科学基金资助项目(S2013010014629;S2012010008261);广东省省部产学研结合专项资金资助项目(2012B090500008);宁波市农业重点科技攻关资助项目(2011C11006)

语种:中文

中文关键词:养殖水质;pH值预测;文化鱼群算法;最小二乘支持向量机;参数优化;主成分分析

外文关键词:Aquaculture water quality ;pH value forecasting; Cultural artificial fish-swarm algorithm; Least squares support vector regression ;Parameter optimization ;Principal component analysis

中文摘要:为解决水质预测传统方法精度低、鲁棒性差等问题,提出了基于主成分分析(PCA)、改进文化鱼群算法(MCAFA)和最小二乘支持向量机(PCA-MCAFA-LSSVM)的养殖水质pH值预测模型。该模型通过主成分分析提取养殖生态环境指标的主成分,降低模型输入向量维数,利用改进文化鱼群算法对最小二乘支持向量机超参数进行组合优化,以自动获取最优超参数建立非线性养殖水质pH值预测模型。应用该模型对宜兴市河蟹养殖某池塘2011年9月1日~9月4日在线监测的水质数据进行了预测分析,试验结果表明:该模型取得较好的预测效果,与分别用蚁群算法或遗传算法优化LSSVM的方法相比,PCA-MCAFA-LSSVM模型有93.05%的测试样本绝对误差小于8%,最大绝对误差仅为11.61%,均方根误差、平均相对误差绝对值和运行时间分别为0.0474、0.0041和4.367s,且均优于其他预测方法。PCA-MCAFA-LSSVM算法不仅计算速度快、测精度高,还能够为河蟹养殖水质调控管理提供决策依据。

外文摘要:In order to solve the problem of low prediction accuracy and bad robustness of the traditional forecasting methods in water quality, this paper put forward the prediction model for pH value of aquaculture water quality based on the principal component analysis (PCA) and least squares support vector machine (LSSVM), which the hyper-parameters is optimized by modified cultural artificial fish-swarm algorithm(MCAFA). The dimension of aquiculture ecologic environmental data was reduced by principal component analysis; double evolutionary mechanism of cultural algorithm for reference was applied and LSSVM was taken as an artificial fish; belief space was used to guide the shoal evolution step size, global search direction and Cauchy mutation to improve the diversity of the artificial fish swarm; so the optimal hyper-parameters nonlinear pH value prediction model was automatically obtained. Based on the prediction model, the water quality on-line monitoring was predicted for a high-density aquaculture pond from September 1, 2011 to September 4, 2011 in Yixing city, Jiangsu province. Experimental results show that the PCA-MCAFA-LSSVM prediction model has good prediction effect than the ant colony algorithm LSSVM and genetic algorithm LSSVM. The absolute error of the 93.05% test samples is less than 8%, and the max absolute error is only 1161%; the root mean square error, average absolute relative error and the running time are 0.0474, 0.0041 and 4.367s respectively, which are better than those from the other models. It is obvious that PCA-MCAFA-LSSVM prediction model has low computational complexity and high forecast accuracy. It can provide the decision basis for the water quality controlling in the high density eriocheir sinensis culture.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心