登录    注册    忘记密码    使用帮助

详细信息

N-Convergence and Chaotic Properties of Non-autonomous Discrete Systems  ( SCI-EXPANDED收录)   被引量:2

文献类型:期刊文献

英文题名:N-Convergence and Chaotic Properties of Non-autonomous Discrete Systems

作者:Li, Risong[1];Malek, Michal[2]

机构:[1]Guangdong Ocean Univ Zhanjiang, Sch Math & Comp Sci, Zhanjiang 524025, Peoples R China;[2]Silesian Univ Opava, Math Inst Opava, Rybnicku 1, Opava 74601, Czech Republic

年份:2023

卷号:22

期号:2

外文期刊名:QUALITATIVE THEORY OF DYNAMICAL SYSTEMS

收录:SCI-EXPANDED(收录号:WOS:000964452300001)、、Scopus(收录号:2-s2.0-85152659747)、WOS

基金:First author was supported by the National Natural Science Foundation of China (Nos. 11501391), Opening Project of Artificial Intelligence Key Laboratory of Sichuan Province (2018RZJ03), Opening Project of Bridge Non-destruction Detecting and Engineering Computing Key Laboratory of Sichuan Province (2018QZJ03), Ministry of Education Science and Technology Development center (2020QT13), the Opening Project of Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things (2020WZJ01) and Scientific Research Project of Sichuan University of Science and Engineering (2020RC24). Second author was supported by RVO funding for IC47813059.

语种:英文

外文关键词:Non-autonomous dynamical system; Distributional chaos of type 1,2,21/2,3; Li and Yorke chaos; Sensitivity; Ergodical sensitivity

外文摘要:Let f(1,infinity) := (f(n))(infinity)(n=1) be a non-autonomous dynamical system on a compact metric space X. For a given N? N we consider Nth iterate f ([N]similar to)(1,infinity) of the system (i.e. f ([N]similar to)(1,infinity) = (f(N) (N (n-1)+1))(infinity) (n =1), where f(i)(n) = f(i)+((n-1))o similar to. . . o f(i) and f(1)(0) = id(X).) We also investigate N- convergent non-autonomous systems this is weaker notion than uniform convergence. In this setting we generalize results regarding different types of chaos. Particularly we prov(1) f(1,infinity) is distributionally chaotic of type 1 if and only if f ([N]similar to)(1,infinity) is also.(2) f(1,infinity) is distributionally chaotic of type 2 if and only if f ([N]similar to)(1,infinity)is also.(3) f(1,infinity) is distributionally chaotic of type 221 if and only if f ([N]similar to)(1,infinity) is also.(4) f(1,infinity) is P-chaotic if and only if f ([N]similar to)(1,infinity) is also, where P-chaos denotes one of the following properties: Li-Yorke chaos, dense chaos, densed-chaos, generic chaos, generic d-chaos, Li-Yorke sensitivity and spatio-temporal chaos.(5) f(1,)infinity is sensitive (resp. ergodically sensitive) if and only if f ([N]similar to)(1,infinity) is also.We also discuss and partly solve a problem given by [Xinxing Wu, Peiyong Zhu, Chaos in a class of non-autonomous discrete systems. Applied Mathematics Letters 26 (2013) 431-436]. Furthermore, we present two examples which show that conditions of N-convergence and continuity in some results cannot be removed.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心