登录    注册    忘记密码    使用帮助

详细信息

RNA Sequencing (RNA-Seq) Analysis Reveals Liver Lipid Metabolism Divergent Adaptive Response to Low- and High-Salinity Stress in Spotted Scat (Scatophagus argus( SCI-EXPANDED收录)   被引量:17

文献类型:期刊文献

英文题名:RNA Sequencing (RNA-Seq) Analysis Reveals Liver Lipid Metabolism Divergent Adaptive Response to Low- and High-Salinity Stress in Spotted Scat (Scatophagus argus)

作者:Chen, Jieqing[1];Cai, Bosheng[1];Tian, Changxu[1];Jiang, Dongneng[1,2];Shi, Hongjuan[1,2];Huang, Yang[1,2];Zhu, Chunhua[1,2];Li, Guangli[1,2,3];Deng, Siping[1,2]

机构:[1]Guangdong Ocean Univ, Fisheries Coll, Zhanjiang 524088, Peoples R China;[2]Guangdong Res Ctr Reprod Control & Breeding Techno, Zhanjiang 524088, Peoples R China;[3]Guangdong Ocean Univ, Fisheries Coll, Guangdong Res Ctr Reprod Control & Breeding Techno, Guangdong Prov Key Lab Pathogen Biol & Epidemiol A, Zhanjiang 524088, Peoples R China

年份:2023

卷号:13

期号:9

外文期刊名:ANIMALS

收录:SCI-EXPANDED(收录号:WOS:000986514400001)、、Scopus(收录号:2-s2.0-85159120392)、WOS

基金:This research was funded by the National Natural Science Foundation of China (Nos. 31972775 and 32172971).

语种:英文

外文关键词:transcriptome; eurihaline fish; osmoregulation; brackish water

外文摘要:The liver transcriptome was analyzed after 22 d culture with different salinity water using RNA sequencing (RNA-seq) in spotted scat (Scatophagus argus). The genes involved in lipid metabolism were differentially down- or up-regulated in low (5 ppt)- and high (35 ppt)-salinity-rated fish in comparison with the control (25 ppt) group. The difference in liver lipid metabolism is important to adapt to low- and high-salinity stress in spotted scat, which has an important value for understanding the molecular basis of salinity adaptation in euryhaline fish.Spotted scat (Scatophagus argus) can tolerate a wide range of salinity fluctuations. It is a good model for studying environmental salinity adaptation. Lipid metabolism plays an important role in salinity adaptation in fish. To elucidate the mechanism of lipid metabolism in the osmoregulation, the liver transcriptome was analyzed after 22 d culture with a salinity of 5 ppt (Low-salinity group: LS), 25 ppt (Control group: Ctrl), and 35 ppt (High-salinity group: HS) water by using RNA sequencing (RNA-seq) in spotted scat. RNA-seq analysis showed that 1276 and 2768 differentially expressed genes (DEGs) were identified in the LS vs. Ctrl and HS vs. Ctrl, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the pathways of steroid hormone biosynthesis, steroid biosynthesis, glycerophospholipid metabolism, glycerolipid metabolism, and lipid metabolism were significantly enriched in the LS vs. Ctrl. The genes of steroid biosynthesis (sqle, dhcr7, and cyp51a1), steroid hormone biosynthesis (ugt2a1, ugt2a2, ugt2b20, and ugt2b31), and glycerophospholipid metabolism (cept1, pla2g4a, and ptdss2) were significantly down-regulated in the LS vs. Ctrl. The pathways related to lipid metabolisms, such as fatty acid metabolism, fatty acid biosynthesis, peroxisome proliferator-activated receptor (PPAR) signaling pathway, adipocytokine signaling pathway, fatty acid degradation, and unsaturated fatty acid biosynthesis, were significantly enriched in the HS vs. Ctrl. The genes of unsaturated fatty acid biosynthesis (scd1, hacd3, fads2, pecr, and elovl1) and adipocytokine signaling pathway (g6pc1, socs1, socs3, adipor2, pck1, and ppara) were significantly up-regulated in the HS vs. Ctrl. These results suggest that the difference in liver lipid metabolism is important to adapt to low- and high-salinity stress in spotted scat, which clarifies the molecular regulatory mechanisms of salinity adaptation in euryhaline fish.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心