详细信息
基于神经网络平台的牡蛎肉超高压杀菌工艺条件优化 被引量:3
Study on the processing optimization of ultra high pressure sterilization from oyster meat base on a neural network method
文献类型:期刊文献
中文题名:基于神经网络平台的牡蛎肉超高压杀菌工艺条件优化
英文题名:Study on the processing optimization of ultra high pressure sterilization from oyster meat base on a neural network method
作者:王晓谦[1];钟赛义[1];秦小明[1];郑惠娜[1];章超桦[1]
机构:[1]广东省水产品加工与安全重点实验室,广东普通高等学校水产品深加工重点实验室,国家贝类加工技术研发分中心(湛江),广东海洋大学食品科技学院,广东湛江524088
年份:2015
卷号:36
期号:6
起止页码:257
中文期刊名:食品工业科技
外文期刊名:Science and Technology of Food Industry
收录:CSTPCD、、北大核心2014、北大核心、CSCD_E2015_2016、CSCD
基金:现代农业产业技术体系建设专项资金资助(CARS-48-07B);广东省科技厅(2010B020201014);国家星火计划十二五重大与重点项目
语种:中文
中文关键词:牡蛎;超高压;杀菌;神经网络
外文关键词:oyster; ultra high pressure ; sterilization; neural network
中文摘要:为研究超高压对牡蛎杀菌的影响,利用Box-Behnken实验设计建立数据集,以菌落总数为参考指标,借助JMP7.0软件的神经网络平台建立神经网络模型,优化牡蛎肉超高压杀菌处理工艺条件。实验结果表明,牡蛎肉超高压杀菌的最佳工艺条件为压力350MPa,保压时间20min,处理温度30℃,在此条件下超高压处理后的牡蛎肉菌落总数从3.2718lg cfu/g减少到2.44342lg cfu/g(灭菌率85.13%),大肠菌群从7MPN/100g减少至0。验证实验结果表明,所建立的神经网络模型具有较好的预测能力,可准确地预测杀菌效果,预测值与实验值的相对误差较小(0.201%)。
外文摘要:The results showed that the best process condition was the pressure was 350MPa for 20min and the temperature was 30℃,the oyster meat total bacteria after pressure treatment in this condition decreased from 3.2718 to 2.443421g cfu/g(The sterilization rate was 85.13%),and Coliforms decreased from 7 to 0(MPN/100g). Validation test results showed that the established neural network model had better prediction ability which could accurately predict the sterilization effect,and the relative error of predicted values and experimental values was small(0.201%).
参考文献:
正在载入数据...