详细信息
上海市PM(10)浓度四季遥感模型研究 被引量:5
Study on the four-season remote sensing models of PM_(10) concentration in Shanghai
文献类型:期刊文献
中文题名:上海市PM(10)浓度四季遥感模型研究
英文题名:Study on the four-season remote sensing models of PM_(10) concentration in Shanghai
作者:李薛[1,2];龚绍琦[2,3];付东洋[1];张莹[1];刘大召[1];丁又专[1];李懿超[2];孙庆飞[2];顾超[2];许智棋[2]
机构:[1]广东海洋大学海洋遥感与信息技术实验室,广东湛江524088;[2]南京信息工程大学,江苏南京210044;[3]南京师范大学虚拟地理环境教育部重点实验室,江苏南京210046
年份:2016
卷号:39
期号:1
起止页码:126
中文期刊名:大气科学学报
外文期刊名:Transactions of Atmospheric Sciences
收录:CSTPCD、、北大核心2014、北大核心、CSCD_E2015_2016、CSCD
基金:国家海洋公益专项(201305019);广东省自然科学基金资助项目(2014A030313603);广东省科技计划项目(2013B030200002);浙江省博士后基金资助项目(BSH1301015);广东海洋大学创新强校项目(GDOU2014050226);南京师范大学虚拟地理环境教育部重点实验室开放课题;江苏省级大学生实践创新训练计划项目(201313982015Y)
语种:中文
中文关键词:API;PM10浓度;MODIS;AOD;遥感模型
外文关键词:API; PM10 concentration; MODIS; AOD; remote sensing model
中文摘要:通过分析2001—2012年上海市PM_(10)浓度(由API(Air Pollution Index)转化得到)的变化规律,构建了上海市PM_(10)浓度的遥感反演模型。结果表明:1)上海市PM_(10)浓度存在季节性变化,应分别建立遥感反演模型。2)分析MODIS气溶胶光学厚度(Aerosol Optical Depth,AOD)产品与PM_(10)浓度之间的相关性发现,AOD须经过垂直和湿度订正才可与PM_(10)建立较好的关系。3)结合垂直和湿度订正分别建立的上海市PM_(10)浓度春夏秋冬四季的遥感反演模型均通过了拟合度检验,其中春季模型采用指数函数、夏季和秋季模型采用二次多项式函数、冬季采用幂函数、全年采用二次多项式函数,利用此四季模型反演上海市PM_(10)浓度具有较高的可信度。
外文摘要:By analyzing the variation rule of PM_(10) concentration( concluded by a conversion of API( Air Pollution Index))in Shanghai from 2001 to 2012,this paper establishes the remote sensing inversion model to measure PM_(10) concentration in Shanghai. As indicated by the results,the follow ing conclusions can be arrived at: 1) There is a seasonal variation for PM_(10) concentration in Shanghai,thus remote sensing inversion models in four seasons should be established,respectively. 2) By probing into the correlation betw een M ODIS AOD( Aerosol Optical Depth)products and PM_(10) concentration,this paper arrives at the conclusion that only by going through aerosol vertical distribution and relative humidity error correction can AOD establish a preferable correlation w ith PM_(10) concentration. 3) Based on the aerosol vertical distribution and relative humidity error correction,all the four-season remote sensing inversion models established to measure the PM_(10) concentration in Shanghai have passed the test of fitting degree. Among them,the spring model uses the exponential function,the summer and autumn models apply the quadratic polynomial function,the w inter model adopts the pow er function,and the yearly model uses the quadratic polynomial function. It is comparatively highly reliable to invert Shanghai PM_(10) concentration using the fourseason remote sensing inversion models.
参考文献:
正在载入数据...