登录    注册    忘记密码    使用帮助

详细信息

基于K-means聚类分析与单经验正交函数回归法的南海声速剖面估计方法研究     被引量:1

Sound speed profile inversion in the South China Sea based on K-means cluster analysis and single empirical orthogonal function regression

文献类型:期刊文献

中文题名:基于K-means聚类分析与单经验正交函数回归法的南海声速剖面估计方法研究

英文题名:Sound speed profile inversion in the South China Sea based on K-means cluster analysis and single empirical orthogonal function regression

作者:欧圳翼[1];屈科[1]

机构:[1]广东海洋大学电子与信息工程学院,广东湛江524000

年份:2022

卷号:41

期号:6

起止页码:821

中文期刊名:声学技术

外文期刊名:Technical Acoustics

收录:CSTPCD、、北大核心、CSCD、北大核心2020、CSCD_E2021_2022

语种:中文

中文关键词:声速剖面;聚类分析;海面遥感参数;南海;单经验正交经验函数(sEOF-r)

外文关键词:sound speed profile;cluster analysis;satellite remote sensing;South China Sea;signle empirical orthogonal function-regression(sEOF-r)

中文摘要:基于遥感参数和Argo历史数据对水体声速剖面(Sound Speed Profile, SSP)进行重构,对单经验正交函数回归(single Empirical Orthogonal Function-regression, sEOF-r)法在南海的适用性进行了研究。由于南海动力活动的复杂性,SSP扰动相对复杂,同时海域内SSP样本稀疏,相关的SSP统计学估计方法在南海区域还难以有效应用。文章基于K-means对样本进行聚类分析,讨论南海海域正交经验函数模态的一致性。通过扩大重构实验网格解决样本稀疏的问题。利用经典的sEOF-r对南海SSP进行反演,对重构SSP的误差分析说明了该方法在南海海域应用的有效性。SSP重构的均方根误差为2.341 1m·s^(-1),较大误差主要出现在深度40~200 m,其原因是海域内混合层深度发生变化。实验证明在南海区域内利用遥感参数可以有效地估计SSP。

外文摘要:The sound speed profile(SSP) is reconstructed by remote sensing parameters and Argo previous data in the South China Sea, and the applicability of single empirical orthogonal function regression(sEOF-r) in the South China Sea is studied. Due to the complexity of hydrodynamic activities in the South China Sea, the corresponding SSP disturbance is relatively complex, and meantime the SSP samples in the sea area are so sparse that the related SSP estimation methods are still difficult to be effectively applied. Based on the K-means cluster analysis of samples, the consistency of the orthogonal empirical function modes is discussed in this paper. Expanding the inversion grid can solve the problem of sparse samples. The classic sEOF-r is used to invert the SSP in the South China Sea, and the error analysis of the reconstructed SSP is used to prove the effectiveness of the method. The root mean square error of the SSP reconstruction is 2.341 1 m·s^(-1), and the larger error mainly occurs at the depth of 40-200 m. The reason is that the depth of the mixed layer changes in the sea area. The experiment demonstrates that the SSP in the region of the South China Sea can be estimated efficiently by use of remote parameters.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心