登录    注册    忘记密码    使用帮助

详细信息

A new method of solving the best approximate solution for a nonlinear fractional equation  ( SCI-EXPANDED收录 EI收录)   被引量:2

文献类型:期刊文献

英文题名:A new method of solving the best approximate solution for a nonlinear fractional equation

作者:Du, Hong[1];Yang, Xinyue[2];Chen, Zhong[3]

机构:[1]GuangDong Ocean Univ, Coll Math & Comp Sci, Zhanjiang, Guangdong, Peoples R China;[2]Lanzhou Univ, Coll Earth & Environm Sci, Lanzhou, Gansu, Peoples R China;[3]Harbin Inst Technol, Dept Math, Weihai 264209, Shandong, Peoples R China

年份:2023

卷号:100

期号:8

起止页码:1702

外文期刊名:INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS

收录:SCI-EXPANDED(收录号:WOS:001007034800001)、、EI(收录号:20232514257720)、Scopus(收录号:2-s2.0-85161843705)、WOS

基金:This work was supported by Guangdong Basic and Applied Basic Research Foundation [grant no. 2022A1515010022] and GuangDong Ocean University [grant no. R20050].

语种:英文

外文关键词:Nonlinear fractional equation; reproducing kernel space; the best approximate solution; nonsmooth solution

外文摘要:A new method of solving the best approximate solution for nonlinear fractional equations with smooth and nonsmooth solutions in reproducing kernel space is proposed in the paper. The nonlinear equation outlines some important equations, such as fractional diffusion-wave equation, nonlinear Klein-Gordon equation and time-fractional sine-Gordon equation. By constructing orthonormal bases in reproducing kernel space using Legendre orthonormal polynomials and Jacobi fractional orthonormal polynomials, the best approximate solution is obtained by searching the minimum of residue in the sense of || . ||(C). Numerical experiments verify that the method has higher accuracy.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心