登录    注册    忘记密码    使用帮助

详细信息

Uniqueness of meromorphic solutions of the difference equation R1(z)f(z+1)+R2(z)f(z)=R3(z)  ( SCI-EXPANDED收录)   被引量:2

文献类型:期刊文献

英文题名:Uniqueness of meromorphic solutions of the difference equation R1(z)f(z+1)+R2(z)f(z)=R3(z)

作者:Li, Sheng[1];Chen, BaoQin[1]

机构:[1]Guangdong Ocean Univ, Fac Math & Comp Sci, Zhanjiang, Peoples R China

年份:2019

卷号:2019

期号:1

外文期刊名:ADVANCES IN DIFFERENCE EQUATIONS

收录:SCI-EXPANDED(收录号:WOS:000473128600003)、、Scopus(收录号:2-s2.0-85068063477)、WOS

基金:This work was supported by the Natural Science Foundation of Guangdong Province (2018A030307062), Excellent Young Teachers Training Program of Guangdong High Education (YQ2015089), and Excellent Young Teachers Training Program of Guangdong Ocean University (HDYQ2015006).

语种:英文

外文关键词:Meromorphic solutions; Difference equations; Uniqueness

外文摘要:This paper mainly concerns the uniqueness of meromorphic solutions of first order linear difference equations of the form where R1(z)?0, R2(z), R3(z) are rational functions. Our results indicate that the finite order transcendental meromorphic solution of equation (*) is mainly determined by its zeros and poles except for some special cases. Examples for the sharpness of our results are also given.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心