详细信息
基于广义多项式神经网络的点云数据隐式曲面重构方法 被引量:4
Implicit surface reconstruction from point cloud data based on generalized polynomials neural network
文献类型:期刊文献
中文题名:基于广义多项式神经网络的点云数据隐式曲面重构方法
英文题名:Implicit surface reconstruction from point cloud data based on generalized polynomials neural network
作者:肖秀春[1,2,3];姜孝华[1];张雨浓[1]
机构:[1]中山大学信息科学与技术学院,广州510275;[2]广东海洋大学信息学院,广东湛江524088;[3]浙江大学CAD/CG国家重点实验室,杭州310058
年份:2009
卷号:29
期号:8
起止页码:2043
中文期刊名:计算机应用
外文期刊名:journal of Computer Applications
收录:CSTPCD、、CSCD2011_2012、北大核心2008、北大核心、CSCD
基金:国家自然科学基金资助项目(60775050);浙江大学CAD/CG国家重点实验室开放课题
语种:中文
中文关键词:广义多项式;神经网络;隐式曲面;点云
外文关键词:generalized polynomial; neural network; implicit surface; scattered point
中文摘要:针对点云数据的三维重建问题,提出了一种隐曲面重构的广义多项式神经网络新方法。该广义多项式神经网络隐层各神经元激励函数互不相同且线性无关,能够对应地学习点云数据样本中不同的模式,因此,具有较好的学习能力。基于梯度下降法原理,推导了其学习算法。仿真实验尝试将该方法应用于一些简单封闭物体的带噪点云数据隐式曲面重建,取得了较理想的重建质量和去噪效果。
外文摘要:A new type of generalized polynomials neural network was proposed to reconstruct 3D implicit surface from the scattered points. Since its hidden-layer neurons were activated with the different and linear independent generalized polynomials, the proposed neural network could achieve good performance in learning different patterns. Then the weightsupdating formula for the new type of neural network was derived based on gradient-descent method. The simulation results on some scattered point models show that this method can obtain good reconstruction quality and denoising effect.
参考文献:
正在载入数据...