登录    注册    忘记密码    使用帮助

详细信息

基于广义似然比的非圆信号频谱感知方法  ( EI收录)  

Spectrum sensing for non-circular signals based on generalized likelihood ratio

文献类型:期刊文献

中文题名:基于广义似然比的非圆信号频谱感知方法

英文题名:Spectrum sensing for non-circular signals based on generalized likelihood ratio

作者:赖华东[1,2,3];罗朋[1,2];徐今强[1,3];刘洺辛[1,2]

机构:[1]广东海洋大学电子与信息工程学院,湛江524088;[2]广东省南海海洋牧场智能装备重点实验室,湛江524088;[3]广东省计算机控制与通信教学重点实验室,湛江524088

年份:2025

卷号:54

期号:3

起止页码:377

中文期刊名:电子科技大学学报

外文期刊名:Journal of University of Electronic Science and Technology of China

收录:北大核心2023、、EI(收录号:20252318541724)、北大核心

基金:国家自然科学基金面上项目(62171143);广东海洋大学科研启动经费资助项目(060302112316)。

语种:中文

中文关键词:频谱感知;非圆信号;广义似然比;埃奇沃斯展开

外文关键词:spectrum sensing;non-circular signal;generalized likelihood ratio;edgeworth expansion

中文摘要:传统的频谱感知方案通常假设信号为圆信号,在非圆信号的信道环境下存在一定程度的性能损失。针对这一问题,提出了一种基于非圆信号的频谱感知方法。利用非圆信号的补偿协方差不为零的特征,在广义似然比的框架下推导了检验统计量。该方法能够充分利用非圆信号的完整二阶统计特性,并且无须预知主用户信号的先验知识以及背景噪声功率。另外,推导了零假设下所提方法的统计矩,并基于埃奇沃斯展开(EE)定理得到所述方法的分布函数。在此基础上,进一步建立了判决门限的表达式。仿真结果表明,与现有的频谱感知方法相比,该方法具有明显的性能提升。

外文摘要:Traditional spectrum sensing schemes that are devised under the assumption of circular signals suffers from performance degradation in the presence of non-circular signals.To overcome such drawback,a novel spectrum sensing method for non-circular signals is proposed.Within the framework of generalized likelihood ratio,the test statistic is constructed by employing the nonzero characteristic of complementary covariance of non-circular signals.The proposed method is able to utilize the complete second-order statistical properties of non-circular signals,and does not require any prior information of the primary signals or noise power.Additionally,the statistical moments of proposed method are derived under null hypothesis,and the cumulative distribution function of proposed method is also obtained based on edgeworth expansion.On this basis,the analytic expression of sensing threshold is further established.Experimental results illustrate that the proposed method outperforms other state-of-the-art detectors in various scenarios.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心