详细信息
文献类型:期刊文献
中文题名:一种用细胞神经网提取遥感图像边缘的新方法
英文题名:Novel CNN algorithm for extracting remote sensing image edge
作者:徐国保[1,2];洪丽兰[2];郝彦爽[1];尹怡欣[1];沈玉利[3]
机构:[1]北京科技大学信息工程学院,北京100083;[2]广东海洋大学信息学院,广东湛江524088;[3]仲恺农业技术学院,广州510225
年份:2008
卷号:25
期号:11
起止页码:3504
中文期刊名:计算机应用研究
外文期刊名:Application Research of Computers
收录:CSTPCD、、北大核心2004、CSCD2011_2012、北大核心、CSCD
基金:广东省自然科学基金资助项目(7010116);湛江市科技攻关资助项目(2008C08014)
语种:中文
中文关键词:细胞神经网;遥感图像;边缘提取;模板
外文关键词:cellular neural networks; remote sensing image; edge detection; template
中文摘要:针对灰度遥感图像具有噪声多、图像亮度均匀、边缘模糊等特点,提出了基于细胞神经网遥感图像边缘检测的新方法。该算法主要是利用细胞神经网先后对遥感图像进行图像滤波、灰度阈值化、膨胀腐蚀、边缘检测等模板操作。实验结果表明,与传统的Sobel和Canny边缘检测算法相比,本算法不仅能有效地去除噪声对边缘检测的影响,而且能够快速完整地提取图像边缘。
外文摘要:As gray remote sensing image had the characteristics of much noise, image brightness uniformity, and fuzzy edge, a novel edge detection method based on cellular neural networks (CNN) was presented. In the algorithm, image filtering, gray threshold segmentation, dilation and erosion, and edge detection'using CNN were performed for remote sensing image successively. The experimental results show that the proposed algorithm, compared with the triditional edge detection algorithms of Sobel and Canny can not only effectively eliminate the influence of noise on edge detection, but quickly detect the complete image edge.
参考文献:
正在载入数据...