登录    注册    忘记密码    使用帮助

详细信息

光纤网络哑资源智能检测与清查方法     被引量:6

Recognition and Inventory Method for Optical Network Dumb Resources

文献类型:期刊文献

中文题名:光纤网络哑资源智能检测与清查方法

英文题名:Recognition and Inventory Method for Optical Network Dumb Resources

作者:张高毅[1,2];张军[3];苟浩淞[2];段佳明[2]

机构:[1]电子科技大学通信抗干扰技术国家级重点实验室,成都611731;[2]中国移动通信集团四川有限公司,成都610041;[3]广东海洋大学数学与计算机学院,湛江524088

年份:2023

卷号:23

期号:18

起止页码:7816

中文期刊名:科学技术与工程

外文期刊名:Science Technology and Engineering

收录:CSTPCD、、北大核心、北大核心2020

基金:四川省知识产权专项(2022-ZS-00021);四川移动博士后新技术研发项目(R22109V6)。

语种:中文

中文关键词:光分配网络(optical distribution network,ODN);YOLOX算法;优化器;目标检测;清查

外文关键词:ODN(optical distribution network);YOLOX algorithm;optimizer;target detection;inventory

中文摘要:光分配网络(optical distribution network,ODN)网络是FTTH网络中的重要组成部分,其质量好坏直接关系到客户使用宽带网络的体验。为了对哑资源进行高效精准管理,改善网络质量,提升宽带业务开通效率,降低维护成本,设计优化了哑资源智能检测及清查系统。该系统基于深度学习中的YOLOX算法,设计改进提出随机梯度下降动量及Nestrov动量(stochastic gradient descent with momentum and nestrov,SGDMN)优化器,该优化器能有效抑制振荡并且在加速训练的同时对梯度进行校正,以此对参数进行更新;在不脱离真实场景的前提下选择数据增强方式,以此实现对分光器、尾纤、标签、二维码等关键信息进行目标检测,进行分类标识,维护人员可基于这些关键信息配合资管系统信息完成哑资源清查。通过其他经典目标识别算法进行对比实验,结果表明改进后的YOLOX算法精度更高,满足哑资源智能检测及清查实际工程需求。

外文摘要:ODN(optical distribution network)network is an important part of FTTH network,and its quality is directly related to the experience of customers using broadband network.In order to efficiently and accurately manage dummy resources,improve broadband service opening efficiency,and reduce maintenance costs,the intelligent detection and inventory system of dumb resource was designed and optimized.Based on YOLOX algorithm in deep learning,the system designs and improves SGDMN(stochastic gradient descent with momentum and nestrov)optimizer,which can effectively suppress oscillation and correct gradient while accelerating training,and update parameters.At the same time,select the data enhancement mode without departing from the real scene,so as to achieve target detection and classification identification of key information such as optical splitter,pigtail,label and QR code.Maintenance person can cooperate with the information of the asset management system to complete dumb resources inventory based on these key information.Compared with other classical target recognition algorithms,the results show that the improved YOLOX algorithm has higher accuracy and meets the practical engineering needs of intelligent detection and inventory of dumb resources.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心