详细信息
Uniqueness of meromorphic solutions sharing values with a meromorphic function to w(z+1)w(z-1) = h(z)wm(z) ( SCI-EXPANDED收录) 被引量:3
文献类型:期刊文献
英文题名:Uniqueness of meromorphic solutions sharing values with a meromorphic function to w(z+1)w(z-1) = h(z)wm(z)
作者:Chen, BaoQin[1];Li, Sheng[1]
机构:[1]Guangdong Ocean Univ, Fac Math & Comp Sci, Zhanjiang, Peoples R China
年份:2019
卷号:2019
期号:1
外文期刊名:ADVANCES IN DIFFERENCE EQUATIONS
收录:SCI-EXPANDED(收录号:WOS:000483815400007)、、WOS
基金:This work was supported by the Natural Science Foundation of Guangdong Province (2018A030307062) and project of Enhancing School with Innovation of Guangdong Ocean University (GDOU2016050228).
语种:英文
外文关键词:Meromorphic solutions; Difference Painleve equation; Uniqueness
外文摘要:For the nonlinear difference equations of the form w(z + 1)w(z -1) = h(z)w(m)(z), where h(z) is a nonzero rational function and m = +/- 2,+/- 1, 0, we show that its transcendental meromorphic solution is mainly determined by its zeros, 1-value points and poles except for some special cases. Examples for the sharpness of these results are given.
参考文献:
正在载入数据...