登录    注册    忘记密码    使用帮助

详细信息

Stronger Forms of Transitivity and Sensitivity for Nonautonomous Discrete Dynamical Systems and Furstenberg Families  ( SCI-EXPANDED收录 EI收录)   被引量:12

文献类型:期刊文献

英文题名:Stronger Forms of Transitivity and Sensitivity for Nonautonomous Discrete Dynamical Systems and Furstenberg Families

作者:Li, Risong[1];Zhao, Yu[1];Wang, Hongqing[1];Liang, Haihua[1]

机构:[1]Guangdong Ocean Univ, Sch Math & Comp Sci, Zhanjiang 524025, Peoples R China

年份:2020

卷号:26

期号:1

起止页码:109

外文期刊名:JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS

收录:SCI-EXPANDED(收录号:WOS:000511704300005)、、EI(收录号:20191106628032)、Scopus(收录号:2-s2.0-85062798954)、WOS

基金:This research was supported the Opening Project of Artificial Intelligence Key Laboratory of Sichuan Province (2018RZJ03), the Opening Project of Bridge Non-destruction Detecting and Engineering Computing Key Laboratory of Sichuan Province (2018QZJ03) and the Key Scientific and Technological Research Project of Science and Technology Department of Zhanjiang City (Grant 2010C3112005).

语种:英文

外文关键词:Furstenberg family; Nonautonomous discrete dynamical systems; F-transiti,e; F-mixing; F-sensiti,e; F-collecti,ely sensiti,e; F-synchronous sensiti,e; (F-1 . F-2)-sensiti,e; F-multi-sensitive

外文摘要:Let (Y, d) be a nontrivial metric space and (Y, g(1,infinity)) be a nonautonomous discrete dynamical system given by sequences (gl)l=1 infinity and F2 be given shift-invariant Furstenberg families. In this paper, we study stronger forms of transitivity and sensitivity for nonautonomous discrete dynamical systems by using Furstenberg family. In particular, we discuss the F-transitivity, F-mixing, F-sensitivity, F-collective sensitivity, F-synchronous sensitivity, (F-1, F-2)-sensitivity and F-multi-sensitivity for the system (Y, g(1,infinity)) and show that under the conditions that gj is semi-open and satisfies g(j) o g = g o gj for each j. {1, 2, ...} and that (, 1,) is -transitive if and only if so is (, ). Yg infinity Yg(, 1,) is -mixing if and only if so is (, ). Yg infinity Yg(, 1,) is -sensitive if and only if so is (, ). Yg infinity Yg(, 1,) is -sensitive if and only if so is (, ). Yg infinity Yg(, 1,) is -collectively sensitive if and only if so is (, ). Yg infinity Yg(, 1,) is -synchronous sensitive if and only if so is (, ). Yg infinity Yg(, 1,) is -multi-sensitive if and only if so is (, ). The above results extend the existing ones.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心