登录    注册    忘记密码    使用帮助

详细信息

CO2 reduction-driven catalytic pyrolysis of biomass-derived feedstock for enhanced chemicals production  ( SCI-EXPANDED收录)  

文献类型:期刊文献

英文题名:CO2 reduction-driven catalytic pyrolysis of biomass-derived feedstock for enhanced chemicals production

作者:Xia, Shengpeng[1,2,3];Chen, Yu[1,2,3];Wang, Chenyang[1,2,4];Jiang, Zhiwei[1,2,5];Liang, Junming[1,2,6];Wang, Zhihao[1,2,3];Zhao, Zengli[1,2,3];Zhao, Kun[1,2,3];Zheng, Anqing[1,2,3]

机构:[1]Chinese Acad Sci, Guangzhou Inst Energy Convers, CAS Key Lab Renewable Energy, Guangzhou 510640, Peoples R China;[2]Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangdong Prov Key Lab High Qual Recycling End of, Guangzhou 510640, Peoples R China;[3]Univ Sci & Technol China, Sch Energy Sci & Engn, Guangzhou 510640, Peoples R China;[4]Chinese Acad Sci, Inst High Energy Phys, China Spallat Neutron Source, Dongguan 523803, Peoples R China;[5]Xian Univ Technol, Sch Mech & Precis Instrument Engn, Xian 710048, Peoples R China;[6]Guangdong Ocean Univ, Sch Mech Engn, Zhanjiang 524088, Peoples R China

年份:2026

卷号:380

外文期刊名:SEPARATION AND PURIFICATION TECHNOLOGY

收录:SCI-EXPANDED(收录号:WOS:001595053400011)、、WOS

基金:The authors acknowledge the National Natural Science Foundation of China (Grants 52276221 and 22279144) , Guangdong Basic and Applied Basic Research Foundation (Grants 2023B1515020093 and 2023B1515020048) , and Key Research and Development Program of Guangzhou (Grant 2023B03J1330) for their financial supports of this work.

语种:英文

外文关键词:Catalytic pyrolysis; Biomass; HZSM-5; Aromatics; CO2 reduction

外文摘要:Catalytic pyrolysis presents an efficient strategy for transforming biomass-based biofurans into high-value aromatics. However, thermodynamic limitations persistently constrain aromatic yields and selectivity. Herein, we report a tandem 2-methylfuran (MF) aromatization with CO2 reduction (TMACR) strategy using a bifunctional metal oxide-zeolite composite catalyst under hydrogen-free conditions. The optimized MoZn-1Co/HZSM-5 catalyst exhibits excellent performance in TMACR, achieving 77.4 % combined carbon yield of aromatics and CO, and in particular exhibiting a 26.9 % enhancement in aromatic carbon yield compared to conventional MF aromatization under N2. Mechanistic investigations employing liquid nitrogen quenching, in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and 13C isotope tracing reveal three major aromatic formation pathways: (i) dimethylbenzofuran-mediated, (ii) olefin-mediated, and (iii) cyclopentenonemediated routes. The latter two pathways generate in-situ hydrogen that activates CO2 via carbonate, bicarbonate, and carboxylate intermediates, selectively producing CO and trace CH4. Consuming MF-aromatization-generated hydrogen to reduce CO2 to CO shifts the equilibrium toward products by Le Chatelier's principle, boosting aromatic yield. Structure-activity relationship studies indicate that proper Br & oslash;nsted-to-Lewis acid site ratios facilitate aromatic formation, while oxygen vacancy concentration governs CO2 conversion efficiency. This strategy delivers dual benefits-enhanced aromatic production and CO2 utilization-paving the way for biomass and CO2 co-valorization into sustainable carbon-negative chemicals.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心