登录    注册    忘记密码    使用帮助

详细信息

     被引量:1

文献类型:期刊文献

中文题名:Asymmetric pixel confusion algorithm for images based on RSA and Arnold transform

作者:Xiao-ling HUANG[1];You-xia DONG[1];Kai-xin JIAO[1];Guo-dong YE[1]

机构:[1]Faculty of Mathematics and Computer Science,Guangdong Ocean University,Zhanjiang 524088,China

年份:2020

卷号:21

期号:12

起止页码:1783

中文期刊名:Frontiers of Information Technology & Electronic Engineering

外文期刊名:信息与电子工程前沿(英文版)

收录:Scopus、CSCD2019_2020、CSCD

基金:Project supported by the National Natural Science Foundation of China(Nos.61972103 and 61702116);the Natural Science Foundation of Guangdong Province,China(No.2019A1515011361);the Project of Enhancing School with Innovation of Guangdong Ocean University(No.Q18306);the Guangdong Postgraduate Education Innovation Project(No.2020JGXM059)。

语种:英文

中文关键词:Rivest-Shamir-Adleman(RSA);Arnold map;Pixel confusion;Asymmetric algorithm;Image confusion

中文摘要:We propose a new asymmetric pixel confusion algorithm for images based on the Rivest-Shamir-Adleman(RSA)public-key cryptosystem and Arnold map.First,the RSA asymmetric algorithm is used to generate two groups of Arnold transform parameters to address the problem of symmetrical distribution of Arnold map parameters.Second,the image is divided into blocks,and the first group of parameters is used to perform Arnold confusion on each sub-block.Then,the second group of parameters is used to perform Arnold confusion on the entire image.The image correlation is thereby fully weakened,and the image confusion degree and effect are further enhanced.The experimental results show that the proposed image pixel confusion algorithm has better confusion effect than the classical Arnold map based confusion and the row-column exchange based confusion.Specifically,the values of gray difference are close to one.In addition,the security of the new confusion operation is dependent on RSA,and it can act as one part of a confusion-substitution structure in a cipher.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心