详细信息
Fourier三角基神经元网络的权值直接确定法 被引量:7
A Direct-Weight-Determination Method for Trigonometrically-Activated Fourier Neural Networks
文献类型:期刊文献
中文题名:Fourier三角基神经元网络的权值直接确定法
英文题名:A Direct-Weight-Determination Method for Trigonometrically-Activated Fourier Neural Networks
作者:张雨浓[1];旷章辉[1];肖秀春[1,2];陈柏桃[3]
机构:[1]中山大学信息科学与技术学院,广东广州510275;[2]广东海洋大学信息学院,广东湛江524088;[3]广东海洋大学航海教育质管办,广东湛江524088
年份:2009
卷号:31
期号:5
起止页码:112
中文期刊名:计算机工程与科学
外文期刊名:Computer Engineering & Science
收录:CSTPCD、、CSCD2011_2012、北大核心2008、北大核心、CSCD
基金:国家自然科学基金资助项目(60643004;60775050);中山大学科研启动费;后备重点课题资助项目
语种:中文
中文关键词:三角正交基函数;Fourier三角基神经元网络;权值修正;直接确定法
外文关键词:trigonometric activation function; trigonometrically-activated Fourier neural network; weight-updating formula ; direct determination method
中文摘要:根据Fourier变换理论,本文构造出一类基于三角正交基的前向神经网络模型。该模型由输入层、隐层、输出层构成,其输入层和输出层采用线性激励函数,以一组三角正交基为其隐层神经元的激励函数。依据误差回传算法(即BP算法),推导了权值修正的迭代公式。针对BP迭代法收敛速度慢、逼近目标函数精度较低的缺点,进一步提出基于伪逆的权值直接确定法,该方法避免了权值反复迭代的冗长过程。仿真和预测结果表明,该方法比传统的BP迭代法具有更快的计算速度和更高的仿真与测试精度。
外文摘要:Based on the Fourier transformation theory, a feed-forward neural network using trigonometric orthogonal activation-functions is constructed in this paper. The neural network adopts a three-layer structure, where the input and output layers employ linear activation functions, while the hidden-layer neurons are activated by a series of trigonometric orthogonal functions. In this paper, we first derive its weight-updating formula by adopting the standard BP training algorithrn. More importantly, a pseudo-inverse method is proposed as well, which directly determines the weights of the neural network without iterative BP training. Simulation results show that the direct-weight-determination method is more efficient and accurate than the conventional BP iterative-training algorithms.
参考文献:
正在载入数据...