登录    注册    忘记密码    使用帮助

详细信息

Padé有理式神经网络及其权值直接确定法     被引量:1

Padé Rational Neural Network and Its Weights-Direct-Determination Method

文献类型:期刊文献

中文题名:Padé有理式神经网络及其权值直接确定法

英文题名:Padé Rational Neural Network and Its Weights-Direct-Determination Method

作者:张雨浓[1];肖秀春[1,2];旷章辉[1]

机构:[1]中山大学信息科学与技术学院,广东广州510275;[2]广东海洋大学信息学院,广东湛江524088

年份:2009

卷号:26

期号:1

起止页码:12

中文期刊名:微电子学与计算机

外文期刊名:Microelectronics & Computer

收录:CSTPCD、、Scopus、北大核心2008、CSCD_E2011_2012、北大核心、CSCD

基金:国家自然科学基金项目(60643004,60775050);中山大学科研启动费、后备重点课题

语种:中文

中文关键词:Padé近似;有理式神经网络;权值修正;权值直接确定法

外文关键词:Padé approximation; rational neural network; weights updating; weights direct determination

中文摘要:根据Pad近似理论,构造出一类前向有理式神经网络.该网络采用四层结构,其中第一层(输入层)和第三层采用线性激励函数,第二层采用幂激励函数,第四层(输出层)采用分数函数(或称除法函数)作为激励函数.依据梯度下降法思想,推导了其权值修正的迭代公式.针对迭代方法收敛速度慢、易陷入局部极小点等缺点,进一步推导出了基于伪逆的权值直接确定方法,该方法避免了冗长的迭代过程.仿真和预测结果均表明Pad有理式神经网络及其权值直接确定法具有较好的计算速度和更高的逼近与预测精度.

外文摘要:Based on Padé approximation theory, a kind of Padé rational neural network is constructed. The neural network model adopts a four-layer structure, its first and third layers employing linear activation functions, while the second and fourth layers are activated by a group of power functions and rational function respectively. Based on BP and gradientdescent method, we firstly derive the weights-updating formula of the Padé neural network. More importantly, for resolving the inherent weakness of BP algorithms such as slow convergence and local minima, a pseudoinverse-based method is further proposed which could determine the neural weights directly without lengthy iterative BP training. Simulation results show that the weights-direct-determination method could be much more efficient and accurate than conventional BP iterative-training algorithms.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心