登录    注册    忘记密码    使用帮助

详细信息

Solving Ordinary Differential Equations by Simplex Integrals via Linear Equations  ( CPCI-S收录)  

文献类型:会议论文

英文题名:Solving Ordinary Differential Equations by Simplex Integrals via Linear Equations

作者:Zhou, Yongxiong[1];Xiang, Shuhuang

机构:[1]Guangdong Ocean Univ, Dept Math, Zhanjiang 524088, Guangdong, Peoples R China

会议论文集:8th International Conference on Matrix Theory and its Applications

会议日期:JUL 16-18, 2008

会议地点:Taiyuan Normal Univ, Taiyuan, PEOPLES R CHINA

主办单位:Taiyuan Normal Univ

语种:英文

外文关键词:ODE; Solution; linear equation

外文摘要:In this paper, we show that liner equations {Sigma(nu-1)(k=0)alpha(k) integral(t1)(t0) t(k)dt = phi(nu+1)(t(1)) 1/1 !Sigma(nu-1)(k=0)alpha(k) integral(t1)(t0) (t(1) - t)t(k)dt = phi(nu+2)(t(1)) 1/(nu-1)!Sigma(nu-1)(k=0)alpha(k) integral(t1)(t0) (t(1) - t)(nu-1) t(k)dt = phi(2 nu)(t(1)) determined polynomial Q(nu-1)(t) = alpha(0) + alpha(1)t + ... +alpha(v-1)t(nu-1) can well approximate to simplex integral phi(nu)(t) = 1/(nu-1)! integral(t1)(t0) y(xi)(t-xi)(nu-1) d xi in mall interval [t(0), t(1)]. Altogether with :recursive relations, we can solve ODE of the form P(n)y((n)) + P(n-1)y((n-1)) + ... + P(1)y' + P(0)y = g(t), where P-n(t), Pn-1(t), ..., P-1(t), P-0(t) are arbitrary degree polynomials. Numerical example about Airy equation illustrates the efficiency of this technique.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心