登录    注册    忘记密码    使用帮助

详细信息

Numerical differentiation by a Fourier extension method with super-order regularization  ( SCI-EXPANDED收录 EI收录)   被引量:10

文献类型:期刊文献

英文题名:Numerical differentiation by a Fourier extension method with super-order regularization

作者:Chen, Baoqin[1];Zhao, Zhenyu[1];Li, Zhi[1];Meng, Zehong[2]

机构:[1]Guangdong Ocean Univ, Fac Math & Comp Sci, Zhanjiang 524088, Peoples R China;[2]Zhejiang Univ Finance & Econ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R China

年份:2018

卷号:334

起止页码:1

外文期刊名:APPLIED MATHEMATICS AND COMPUTATION

收录:SCI-EXPANDED(收录号:WOS:000432790300001)、、EI(收录号:20181605031412)、Scopus(收录号:2-s2.0-85045439241)、WOS

基金:This work is supported by the National Natural Science Foundation of China, China (no. 11201085) and project of enhancing school with innovation of Guangdong Ocean University (2016050202).

语种:英文

外文关键词:Numerical differentiation; Fourier extension; Tikhonov regularization method; Supper-order regularization; Discrepancy principle; Ill posed problem

外文摘要:Based on the idea of Fourier extension, we develop a new method for numerical differentiation. The Tikhonov regularization method with a super-order penalty term is presented to deal with the illposdness of the problem and the regularization parameter can be chosen by a discrepancy principle. For various smooth conditions, the solution process of the new method is uniform and order optimal error bounds can be obtained. Numerical experiments are also presented to illustrate the effectiveness of the proposed method. (C) 2018 Elsevier Inc. All rights reserved.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心