登录    注册    忘记密码    使用帮助

详细信息

Chaos in Duopoly Games via Furstenberg Family Couple  ( SCI-EXPANDED收录 EI收录)   被引量:1

文献类型:期刊文献

英文题名:Chaos in Duopoly Games via Furstenberg Family Couple

作者:Zhao, Yu[1];Li, Risong[1]

机构:[1]Guangdong Ocean Univ, Sch Math & Comp Sci, Zhanjiang 524025, Peoples R China

年份:2019

卷号:2019

外文期刊名:COMPLEXITY

收录:SCI-EXPANDED(收录号:WOS:000499939300001)、、EI(收录号:20195107851923)、Scopus(收录号:2-s2.0-85076369734)、WOS

基金:This project was supported by the Opening Project of Artificial Intelligence Key Laboratory of Sichuan Province (No. 2018RZJ03) and the Opening Project of Bridge Nondestruction Detecting and Engineering Computing Key Laboratory of Sichuan Province (2018QZJ03).

语种:英文

外文摘要:Assume that H-1 and H-2 are two given closed subintervals of R and that f(2) : H-1 -> H-2 and f(1) : H-2 -> H-1 are continuous maps. Let Y(h(1), h(2)) = (f(1)(h(2)), f(2)(h(1))) be a Cournot map over the space H-1 x H-2. In this paper, we study (g(1), g(2))-chaos (resp. strong (g(1), g(2))-chaos) of such a Cournot map. We will show that the following are true: (1) Y is (g(1), g(2))-chaotic (resp. strong (g(1), g(2))-chaotic) if and only if Y-2 vertical bar(Lambda 1) is (g(1), g(2))-chaotic (resp. strong (g(1), g(2))-chaotic) if and only if Gamma(2)vertical bar(Lambda 2) is (g(1), g(2))-chaotic (resp. strong (g(1), g(2))-chaotic). (2) Y is (g(1), g(2))-chaotic (resp. strong (g(1), g(2))-chaotic) if and only if Y-2 vertical bar(Lambda 1 boolean OR Lambda 2) is (g(1), g(2))-chaotic (resp. strong (g(1), g(2))-chaotic). (3) f(1)circle f(2) is (g(1), g(2))-chaotic (resp. strong (g(1), g(2))-chaotic) if and only if so is f(2)circle f(1).

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心