详细信息
文献类型:期刊文献
英文题名:Chaos in Duopoly Games via Furstenberg Family Couple
作者:Zhao, Yu[1];Li, Risong[1]
机构:[1]Guangdong Ocean Univ, Sch Math & Comp Sci, Zhanjiang 524025, Peoples R China
年份:2019
卷号:2019
外文期刊名:COMPLEXITY
收录:SCI-EXPANDED(收录号:WOS:000499939300001)、、EI(收录号:20195107851923)、Scopus(收录号:2-s2.0-85076369734)、WOS
基金:This project was supported by the Opening Project of Artificial Intelligence Key Laboratory of Sichuan Province (No. 2018RZJ03) and the Opening Project of Bridge Nondestruction Detecting and Engineering Computing Key Laboratory of Sichuan Province (2018QZJ03).
语种:英文
外文摘要:Assume that H-1 and H-2 are two given closed subintervals of R and that f(2) : H-1 -> H-2 and f(1) : H-2 -> H-1 are continuous maps. Let Y(h(1), h(2)) = (f(1)(h(2)), f(2)(h(1))) be a Cournot map over the space H-1 x H-2. In this paper, we study (g(1), g(2))-chaos (resp. strong (g(1), g(2))-chaos) of such a Cournot map. We will show that the following are true: (1) Y is (g(1), g(2))-chaotic (resp. strong (g(1), g(2))-chaotic) if and only if Y-2 vertical bar(Lambda 1) is (g(1), g(2))-chaotic (resp. strong (g(1), g(2))-chaotic) if and only if Gamma(2)vertical bar(Lambda 2) is (g(1), g(2))-chaotic (resp. strong (g(1), g(2))-chaotic). (2) Y is (g(1), g(2))-chaotic (resp. strong (g(1), g(2))-chaotic) if and only if Y-2 vertical bar(Lambda 1 boolean OR Lambda 2) is (g(1), g(2))-chaotic (resp. strong (g(1), g(2))-chaotic). (3) f(1)circle f(2) is (g(1), g(2))-chaotic (resp. strong (g(1), g(2))-chaotic) if and only if so is f(2)circle f(1).
参考文献:
正在载入数据...