登录    注册    忘记密码    使用帮助

详细信息

基于频分神经网络和预测控制的PID参数整定研究     被引量:5

Research of PID Tuning Based on Frequency_Divide Neural Network and Model Predictive Control

文献类型:期刊文献

中文题名:基于频分神经网络和预测控制的PID参数整定研究

英文题名:Research of PID Tuning Based on Frequency_Divide Neural Network and Model Predictive Control

作者:刘加存[1];梅其祥[1];李春辉[2]

机构:[1]广东海洋大学信息学院,湛江524088;[2]广东海洋大学航海学院,湛江524088

年份:2014

卷号:26

期号:5

起止页码:1176

中文期刊名:系统仿真学报

外文期刊名:Journal of System Simulation

收录:CSTPCD、、北大核心2011、Scopus、北大核心、CSCD、CSCD2013_2014

基金:国家自然科学基金资助项目(61272534)

语种:中文

中文关键词:FTRR神经网络;频谱分析;模型预测控制;PID参数整定

外文关键词:FTRR neural network; power-density spectrum; model predictive control; PID parameter tuning

中文摘要:为了得到精确的泛化性较高的缓变非线性对象的可离线在线模型,提出了频分时滞回归径向基神经网络(FTRR)算法。此算法基于频谱分析,先把信号分解出数个频带,再构建神经网络模型。该模型用于改进的单步模型预测控制中离线求得控制输出,由此,再依据有约束线性最小二乘优化算法对PID参数进行离线整定,使其PID输出与单步模型预测控制输出相似。仿真结果表明,FTRR模型精度高且泛化性好,PID整定后的系统调节品质较高,适用于缓变控制系统。

外文摘要:In order to get the very generalized accurate on_off_line model of slow changing non_line object, an algorithm of frequency_divide time_delay regress RBF(FTRR) neural network was discussed. With the different frequency bands of signal by power-density spectrum analysis, a neural network model was built. The FTRR model was used in improved model predictive control, and an off_line control output was got. From this output, the PID parameter was tuned with linear least-squares in off_line status, to ensure that the two control output was very similar. Simulation shows that FTRR model is accurate and generalized, and system adjusting quality is increased after PID tuning. The model can be used in slow changing control system.

参考文献:

正在载入数据...

版权所有©广东海洋大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心